Package index
-
read_animalta() - Read AnimalTA data
-
read_bonsai() - Read centroid tracking data from Bonsai
-
read_deeplabcut() - Read DeepLabCut data
-
read_idtracker() - Read idtracker.ai data
-
read_lightningpose() - Read LightningPose data
-
read_movement()experimental - Read movement data
-
read_sleap() - Read SLEAP data
-
read_trackball() - Read trackball data
-
read_treadmill()experimental - Read treadmill data
-
read_trex() - Read TRex Movement Tracking Data
-
check_na_timing() - Visualize the timing of missing values in the data
-
check_na_gapsize() - Visualize the occurrence of gap sizes in the data
-
check_confidence() - Visualize the distribution of confidence values for each keypoint
-
check_pose() - Analyze the distribution of distances from keypoints to the centroid
-
filter_na_confidence() - Filter low-confidence values in a dataset
-
filter_na_speed() - Filter values by speed threshold
-
filter_na_roi() - Filter coordinates outside a region of interest (ROI)
-
replace_na() - Replace Missing Values Using Various Methods
-
replace_na_linear() - Replace Missing Values Using Linear Interpolation
-
replace_na_locf() - Replace Missing Values Using Last Observation Carried Forward
-
replace_na_spline() - Replace Missing Values Using Spline Interpolation
-
replace_na_stine() - Replace Missing Values Using Stineman Interpolation
-
replace_na_value() - Replace Missing Values with a Constant Value
-
filter_movement()experimental - Smooth Movement Data
-
filter_lowpass() - Apply Butterworth Lowpass Filter to Signal
-
filter_highpass() - Apply Butterworth Highpass Filter to Signal
-
filter_lowpass_fft() - Apply FFT-based Lowpass Filter to Signal
-
filter_highpass_fft() - Apply FFT-based Highpass Filter to Signal
-
filter_kalman() - Kalman Filter for Regular Time Series
-
filter_kalman_irregular() - Kalman Filter for Irregular Time Series with Optional Resampling
-
filter_rollmean()experimental - Apply Rolling Mean Filter
-
filter_rollmedian()experimental - Apply Rolling Median Filter
-
filter_sgolay() - Apply Savitzky-Golay Filter to Movement Data
Transformations
These functions allow you to make tranformations to your coordinate system, such as translations, rotations or conversion to polar coordinates.
-
transform_to_egocentric()experimental - Transform coordinates to egocentric reference frame
-
translate_coords()experimental - Translate coordinates (Cartesian)
-
rotate_coords()experimental - Rotate coordinates in Cartesian space
-
map_to_cartesian() - Map from polar to Cartesian coordinates
-
map_to_polar() - Map from Cartesian to polar coordinates
-
add_centroid() - Add Centroid to Movement Data
-
calculate_kinematics()experimental - Calculate kinematics from position data
-
calculate_statistics()experimental - Calculate summary statistics
-
calculate_derivative() - Calculate the derivative (dx/dt) Calculate the derivative (dx/dt) with four arguments
-
calculate_direction() - Calculate direction Calculate direction (angle) from x and y distance using the (two-argument) arc-tangent. Converts to
circular.
-
calculate_distance() - Calculate distance (Pythagoras) Calculate distance from an x and y distance, using Pythagoras theorem.
-
calculate_speed() - Calculate Speed from Position Data
-
calculate_straightness() - Calculate straightness measures
-
init_metadata()experimental - Initiate movement metadata
-
get_metadata()experimental - Get/extract metadata
-
set_uuid()experimental - Set UUID
-
set_start_datetime()experimental - Set starting datetime
-
set_framerate() - Adjust time values to reflect a new framerate
-
set_individual() - Assign a new individual identifier to all rows in a dataset
-
get_example_data() - Download example tracking data
-
group_every()experimental - Group every N observations together
-
align_timeseries() - Align a time series with a reference series using cross-correlation
-
find_lag() - Find optimal time lag between two time series using cross-correlation
-
find_peaks() - Find Peaks in Time Series Data
-
find_troughs() - Find Troughs in Time Series Data
-
plot_position_timeseries() - Plot Time Series of Keypoint Position
-
plot_speed_timeseries() - Plot Time Series of Keypoint Speed